سفارش تبلیغ
صبا ویژن

فرآیند ساخت تیرچه های بتنی

تیرچه‌های بتنی نوعی از تیرهای ساخته شده از بتن معمولی هستند که به عنوان یک رابط افقی بین پایه‌ها یا کلاهک شمع‌ها عمل می‌کنند. آنها باید با تقویت کننده‌های پیوسته در داخل یا خارج از ستون پشتیبانی شوند و یا در داخل کلاهک شمع یا پایه با توجه به مشخصات ذکر شده در ACI 318-14 مقید شوند. تیرها مستقیما می‌توانند بر روی خاک و یا بالای خاک و در بین دهانه‌های بین ستون‌ها قرار بگیرند. برخی از تیرهای پیوسته، در زیر پایه ساختمان و یا نقاط تحمل کننده بار قرار می‌گیرند تا بار را بر روی خاک انتقال داده و آن را توزیع کنند.

در این مقاله، روند ساخت تیرچه بتنی مسلح مورد بحث قرار خواهد گرفت.

 

فرآیند ساخت تیرچه‌های بتنی

مراحل مربوط به روش ساخت عبارتند از:

1. آماده سازی برای قرار دادن تیرچه‌ها

2. نصب و راه اندازی قالب بتن ریزی

3. قرار دادن تقویت کننده‌ها در تیرهای سطحی

4. بتن ریزی تیرچه‌های بتنی

در زیر این مراحل را توضیح خواهیم داد.

 

1. آماده سازی و حفاری برای قرار دادن تیرچه‌های بتنی

ترانشه‌هایی برای قرارگیری تیرها بر اساس ارتفاع آنها ایجاد می‌شود. به طوری که، اگر آنها به طور مستقیم بر روی زمین ساخته شوند، سطح زمین تراز شده و آماده سازی می‌شود. در صورتی که از تیرچه‌ها بین ستون‌ها استفاده شود، آماده سازی روند ساخت و حفاری پس از نهایی شدن ساخت شمع آغاز خواهد شد. با این حال، اگر تیرها همراه با پایه‌ها قرار است مورد استفاده قرار بگیرد، حفاری ترانشه‌ها برای تیرها باید همراه با مراحل آماده سازی پایه‌ها انجام شود. در نهایت، اگر تیرهای بالاتر از سطح زمین قرار است ساخته شوند، نصب قالب‌ها اولین قدم در فرایند ساخت تیرها است.

 

2. نصب و راه اندازی قالب بتن ریزی

پس از تکمیل آماده سازی سایت و حفاری ترانشه‌ها، قالب‌ها باید با توجه به ابعاد تیر نصب شوند که در طراحی‌ها جزئیات آنها ارائه شده است. اگر تیر قرار است بر روی زمین ساخته شود، ابتدا بخش مرکزی قالب باید قبل از اطراف آن بر روی زمین قرار گیرد. در این حالت، سطح آجری مسطح در امتداد تیر به جای شاتر در پایین قالب قرار می‌گیرد.

سپس، فارغ از این که قالب بر روی سطح آجری مسطح قرار بگیرد یا در طرفین قالب قرار داده شود، نصب تقویت کننده‌ها باید پس از آن انجام شود. اگر تیر بالاتر از سطح زمین قرار است ساخته شود، فرایند ساخت قالب‌ها شبیه به تیرهای معمولی خواهد بود. بنابراین، شاترها باید در پایین و هر دو طرف تیر قرار بگیرند. در این حالت، قالب را می‌توانید به طور کامل پس از قرار دادن تقویت کننده‌ها ثابت کنید، و یا فقط بخش پایینی شاتر را ثابت کرده و تقویت کننده‌ها را قرار دهید و سپس به داخل شاترها امتداد دهید. این ترتیب ساخت بر اساس سهولت و راحتی فرآیند ساخت و ساز انتخاب شده است.

در نهایت، پس از اتمام عملیات قالب‌های تیرهای سطحی، اطمینان حاصل کنید که ابعاد اختصاص داده شده به تیرها به گونه‌ای است که فاصله مورد نیاز برای پوشش تقویت کننده‌ها در نظر گرفته شده است. علاوه بر این، قدرت شاتر، مقاومت در برابر آب، مقاومت تکیه گاههای تیرهای سطحی، تعامد شاترهای جانبی و محل تیرها نیز باید بررسی شوند.

 

3. قرار دادن تقویت کننده‌ها در تیرهای سطحی 

پس از اتمام عملیات شاتر و یا قرار دادن آجرهای مسطح در پایین تیرهای سطحی، نصب تقویت کننده به طور مستقیم شروع می‌شود و یا به پس از قرار دادن یک طرف قالب موکول می‌شود. جزئیات تقویت کننده‌ها مانند اندازه و تعداد تقویت کننده‌های طولی و طول مورد نیاز، تعداد و فاصله خاموت‌ها در طرح‌های سازه‌ای ارائه شده است. سرانجام، تعداد و اندازه تقویت کننده‌های بالایی، پایینی و تقویت کننده‌های اضافی، طول هم پوشانی و رعایت آنها، قلاب‌ها، جداکننده‌ها و پوشش تقویتی باید به وضوح بعد از قرارگیری تقویت کننده‌ها بررسی شوند.

 

4. بتن ریزی تیرچه‌های بتنی

تیرها را می‌توانید با مخلوط بتن آماده یا بتن مسلح بسازید. مورد اول در حجم‌های بتن ریزی بالا توصیه می‌شود. اگر قصد استفاده از بتن آماده را دارید، تولیدکننده بتن فقط به مقاومت مورد نظر شما نیاز خواهد داشت. با این حال، اگر قصد استفاده از مخلوط بتن در محل را دارید، نسبت اختلاط اجزای بتن را باید تعیین کنید. پس از بتن ریزی باید با استفاده از تجهیزات ویبراتور یا هر وسیله مناسب دیگر عملیات فشرده سازی را انجام دهید، سپس بالای تیرها را تراز کنید. در نهایت، شاترهای پیرامونی بتن تیرهای را می‌توانید 24 ساعت پس از بتن ریزی جدا کنید. با این حال، شاتر پایینی را نمی‌توانید تا زمان دستیابی کامل بتن به مقاومت نهایی حذف کنید. این مدت زمان برای جداسازی شاتر پایینی بستگی به طول دهانه تیر مورد نظر دارد.



نکاتی در مورد تقویت تیرچه های فولادی

هدف از این مقاله ارائه روش‌ها و جزئیات پیشنهاد شده برای تقویت تیرچه‌های فولادی با جان باز است. تقویت تیرچه‌های فولادی با جان باز در اغلب موارد به علت اضافه کردن واحدهای پشت بام، تسمه نقاله‌های زیر بخشی و یا افزایش بارهای اعمال شده که در مشخصات اصلی تیرچه‌ها مورد توجه قرار نگرفته‌اند، مورد نیاز است. سه روش اساسی برای تقویت سیستم تیرچه‌ها یا سیستم بارگذاری آنها وجود دارد:

  1. توزیع مجدد بار.
  2. اضافه کردن تیرچه‌ها یا تیرهای جدید.
  3. تقویت تیرچه‌های موجود.

ظرفیت تیرچه‌های فولادی موجود

اولین گام در تعیین این که یک سیستم تیرچه نیاز به تقویت دارد این است که ظرفیت تیرچه را تعیین کنید. تیرچه بتنی و فولادی هر کدام ظرفیت تحمل بار مشخصی دارند. برای تعیین ظرفیت می‌توان با استفاده از جداول بارگذاری تیرچه‌های فولادی (SJI) که در کتابچه راهنمای تیرچه‌های فولادی (SJI، 2003) موجود است، انجام داد.

مشخصات SJI برای تمام تیرچه‌های ساخته شده از 1928 تا 2003 لیست شده است. الزامات مربوط به مشخصات ظرفیت اعضای جان به طور ویژه‌ای حائز اهمیت است (اعضای جان تیرچه‌های H شکل برای حداقل 50? از واکنش نهایی طراحی شده‌اند، در حالی که تیرچه‌های سری S فقط برای حداقل 25? از واکنش نهایی طراحی شده‌اند).

اگر داده‌های مورد نیاز مربوط به سیستم تیرچه در دسترس نباشد، در نتیجه اندازه گیری‌های دقیق اعضای قطری و جان برای محاسبه ظرفیت تیرچه باید انجام شود. اگر بتوانید سال مربوط به تولید تیرچه را مشخص کنید، از جداول مشخصه‌ها و جداول بارگذاری می‌توانید برای تعیین دیاگرام پوش برش و خمش استفاده کرد. اگر نمی‌توانید از جداول بارگذاری تیرچه‌ها استفاده کنید، می‌توانید از یک تجزیه و تحلیل برای تعیین نیروی مجاز (ASD) یا طراحی (LRFD) در تیرچه‌های استفاده کنید.

مشخصات SJI برای تیرچه‌های سری K اجازه می‌دهد که بتوانید از خروج از مرکزیت در مفاصل قطری به هنگام تجزیه و تحلیل صرف نظر کنید، این کار تنها در صورتی امکان پذیر است که از قانون "w rule" استفاده شود. این قانون از بخش 4.5 (d) مشخصات استاندارد SJI برای اتصالات فولادی Open Web Steel، K-Series (SJI)، (2005) برگرفته شده است. با توجه به مشخصات، اعضای متصل در مفاصل باید دارای یک نقطه تلاقی برای محور مرکزی خود باشند.

در غیر این صورت، باید توجه ویژه‌ای به تاثیر خروج از مرکزیت معطوف شود. در هیچ صورتی، خروج از مرکزیت هر عضو جان در محل مفصل نباید بیش از ابعاد کلی باشد که در معمولا در پلان جان اندازه گیری می‌شود که به بزرگترین عضو متصل است. خروج از مرکزیتی هر عضو جان به معنای فاصله عمودی محور مرکزی عضو جان تا نقطه‌ای بر روی محور مرکزی عضو قطری است که به طور عمودی در بالای یا پایین محل تقاطع محور مرکزی اعضای قطری تشکیل دهنده مفصل است.

بهره‌گیری از مشخصات تیرچه‌ها

مشخصات SJI برای تیرچه‌های سری LH، سری‌های DLH و تیرچه‌های شاهتیری نشان می‌دهد که خروج از مرکزیت در هر دو طرف محور خنثی اعضای قطری ممکن است قابل اغماض باشد، در حالی که از فاصله بین محور خنثی و پشت عضو قطری بیشتر نباشد. مشخصات SJI برای تیرچه‌های سری K این امکان را می‌دهد که بتوانید از لنگرهای خمشی در اعضای قطری بالا صرف نظر کنید، در صورتی که فاصله بین نقاط پانل بیش از 24 اینچ نباشد.

این تحلیل‌ها و فرضیات طراحی توسط صدها آزمایش انجام شده به طور سالیانه توسط تولید کنندگان به عنوان روشی محافظه کارانه شناخته شده‌اند. نویسنده پیشنهاد می‌کند که هنگام تجزیه و تحلیل تیرچه‌ها (یک تجزیه و تحلیل خطی درجه یک کافی است) با اعضای تقویت کننده، باید معیارهای زیر در مدل مورد استفاده قرار بگیرد:

  1. وقتی که خروج از مرکزیت بیشتر از مقادیر مجاز ذکر شده در SJI باشد، باید در نظر گرفته شود
  2. لنگرهای اعضای قطری بالا را در طراحی در نظر بگیرید، حتی زمانی که فاصله نقاط پانل کمتر از 24 اینچ باشد.
  3. از اتصالات مفصلی در انتهای اعضای جان استفاده شود که در طراحی تیرچه‌ها روشی استاندارد به حساب می‌آید.

بند 2 به این دلیل پیشنهاد می‌شود که تیرهای تقویت شده از نظر تست برای ارزیابی فرضیات طراحی و تحلیل استفاده نمی‌شوند.

قبل از تصمیم گیری در مورد روش تقویت مناسب، طراح باید به اندازه کافی اطلاعات در مورد سیستم تیرچه‌ها و تقویت آنها کسب کند.


مهاربندی شاهتیرهای تیرچه ای به وسیله مقاطع فولادی با جان باز

اتصال ضد لغزشی در شاهتیرهای تیرچه‌ ای نیاز به طراحی اضافی توسط طراح دارد و ممکن است هزینه‌های پروژه را افزایش دهد، زیرا باید از پیچ و مهره‌های با مقاومت بالا استفاده شود.

برای سفارش تیرچه کرومیت با ما تماس بگیرید.

پیچ و مهره‌های با مقاومت بالا گران‌تر از پیچ‌های ASTM A307 هستند که به طور معمول برای اتصالات استفاده می‌شوند و برای رسیدن به مقاومت در برابر لغزش مناسب باید پیچ‌ها را به درستی در جای خود محکم کنید. واشرهای سخت افزاری نیز مورد نیاز هستند. علاوه بر این، طراح ممکن است تعیین کند که از پیچ و مهره‌ها بازرسی شود، که در نتیجه منجر به افزایش هزینه‌های پروژه می‌شود.

بخش پایینی پایه و سطح بالشتک بر روی اعضای اولیه باید در حین رنگ آمیزی پوشانده شوند، یا سازنده تیرچه و عضو اصلی باید آزمایشاتی را انجام دهند تا ضریب مقاومت در برابر لغزش را برای سطح رنگ آمیزی شده تعیین کنند. طراح باید بررسی کند که آیا مقاومت مناسب تامین شده است یا خیر. طراح به طور کلی نمی‌داند که چه کسی تیرچه‌ها یا اعضای اولیه را تولید می‌کند، بنابراین باید ضریب لغزش مورد نیاز یا نیروی مهاربندی را مشخص کند تا توسط کمیته استاندارد ساختمان تائید شود. علاوه بر این، در این روش فرض شده است که سطح در تماس کامل با سطح اعضای اولیه قاب است که معمولا برای پایه‌های تیرچه اتفاق نمی‌افتد.

مواد سازنده پایه بالشتک‌های تیرچه تحت برش و اسلات‌های اتصال پایه‌ها تحت نیروی پانچ قرار دارند. این فرآیندها لبه‌هایی را ایجاد می‌کنند که مانع از برخورد کامل آنها با سطوح بالشتک می‌شوند. همچنین پایه‌های بالشتک‌ها پس از جوشکاری به طور معمول تراز می‌شوند زیرا به طور کامل مسطح نیستند و لزوما برای ایجاد شیب‌های 4 اینچ / فوت یا کمتر استفاده می‌شوند.


تعیین ضریب اصطکاک در شاهتیرهای تیرچه‌ای


اتصال اصطکاکی مستلزم آن است که طراح ضریب اصطکاک بین پایه و عضو اصلی را تایید کند. این بستگی به سازنده و نصب کننده دارد تا آزمایشات لغزشی را برای تعیین ضریب اصطکاک انجام دهد. به علت تعدد سازندگان مختلف، انجام تست ممکن است غیر ممکن باشد، به استثنای سازندگانی که هم تیرچه و هم شاهتیر را برای پروژه عرضه می‌کنند. بر اساس اطلاعات نویسنده، هیچ آزمون استانداردی برای تعیین ضریب اصطکاک وجود ندارد، بنابراین برای تعیین ضریب باید از اصول پایه‌ای فیزیک استفاده شود. همچنین هیچ استانداردی برای تعیین فاکتور مقاومت یا فاکتور ایمنی، وجود ندارد.

جالب است که توجه داشته باشیم که به دلیل افزایش نیاز به مهاربندی اعضای اولیه به دلیل افزایش میزان باری که باید تحمل کنند، نیروی مقاوم نیز طبیعتا افزایش می‌یابد، از آنجا که مقاومت نسبتی از واکنش تیرچه‌ها بر روی اعضای اولیه است. به همین دلیل، فاکتور مقاومت 0.90 و ضریب ایمنی 1.67 ممکن است بسته به میانگین و انحراف معیار تعیین شده از آزمایش‌ها تعیین شود. این مقادیر به ویژه در مواقعی مناسب هستند که مقاومت اصطکاکی با زمان تغییر نکند. به عنوان مثال، در صورت زنگ زدگی، وجود گرد و خاک یا آب ممکن است مقاومت اصطکاکی تغییر کند، پس باید از ضریب ایمنی بالاتری استفاده شود.

سوراخکاری غیر استاندارد برای تولید کننده تیرچه‌ها بسیار پرهزینه است و هزینه‌های پروژه را به طور قابل توجهی افزایش می‌دهد. یکی از صرفه جویی‌های اصلی مربوط به استفاده از تیرچه‌های فلزی با جان باز در طول ساخت آنها، طول دقیق تیرچه‌ها نباید در حین عملیات نصب تحت کنترل باشد (به این دلیل که پایه‌های اتصال در ساخت تیرچه استفاده می‌شود). اگر سوراخ با اندازه استاندارد مشخص شود، این کنترل باید اجرا شود. این تولید کنندگان را مجبور می‌کند تا از رویکرد خط مونتاژ خود فاصله بگیرند، بنابراین هزینه‌های تیرچه‌ها به طور قابل توجهی افزایش می‌یابد. علاوه بر این، استفاده از اسلات‌های اتصال در پایه‌های پیوسته اجازه می‌دهد تا اجرا کننده امکان استفاده از تلورانس‌های ساختمانی کوچک را داشته باشد. اگر از سوراخ‌های استاندارد در پایه‌ها استفاده شود، این تنظیمات به آسانی قابل اجرا نیست. این راه حل قطعا عملی نیست.

لغزش اتصال مجاز ممکن است در بعضی موارد عملی باشد که وابسته به الزامات نیروی مهاربندی است. نیروهای مهاربندی تابعی از خروج از مرکزیت اعضای مهاربندی از خط مستقیم هستند. اگر عضو مهاربندی بتواند قبل از درگیر شدن مهاربند حرکت کند، خروج از مرکزیت از خط راست با افزایش میزان لغزش مجاز افزایش می‌یابد. تولید کنندگان تیرچه‌ها سوراخ‌های استاندارد را در پایه‌های تیرچه‌ها ایجاد نمی‌کنند و طول پایه‌های اتصال در میان تولید کنندگان تیرچه‌ها متفاوت است. با این حال، برخی از تولید کنندگان ممکن است به طراح اجازه دهند طول اسلات اتصال را در محدوده مورد نیاز تعیین کنند. لازم به ذکر است که تمام راه حل‌ها باعث ایجاد نیروهایی در تیرچه‌ها می‌شوند. با توجه به بزرگی آنها، مهندس باید این نیروها را در طراحی و جزئیات در نظر بگیرد.


فونداسیون تیر و پایه با بتن قسمت سه

آخرین چیزی که من می‌خواهم به آن اشاره کنم آزمایش بتن است. این در همه پروژه‌های مسکونی رخ نمی‌دهد، اما این فقط یک پروژه مسکونی نیست. یک شرکت آزمایشی به محل پروژه می‌آید و بتن را از دو کامیون بتن مختلف (به طور تصادفی) برای انجام آزمایش‌های اسلامپ و مقاومت فشاری بررسی می‌کند.

آنها درجه حرارت بتن را اندازه می‌گیرند تا اطمینان حاصل شود که بتن برای مدتی طولانی در کامیون منتظر نبوده و پس از حمل از محل کارخانه همچنان برای استفاده مناسب است. کمیته استاندارد ساختمان مهندسین را موظف به آزمایش بتن قبل از انجام کار نموده تا هر سازه‌ای با استاندارد بالا ساخته شود.

 

در اینجا مجموعه‌ای از موارد ارائه شده است که نشان دهنده نحوه انجام آزمایش اسلامپ و مقاومت فشاری است. نحوه کارکرد به این صورت است که یک مخروط فلزی سه بار پر می‌شود، هر بار نیز با 20 ضربه میله فلزی توزیع می‌شود. سپس مخروط به آرامی برداشته می‌شود و در کنار مخروط بتنی قرار می‌گیرد.

میله فلزی از بالای صفحه تا محل بتن پس از افت را اندازه گیری می‌کند. میزان کاهش نشان دهنده میزان مقاومت بتن است. من اعتقاد دارم مهندسین سازه به دنبال بتنی با مقاومت 3500 پوند در اینچ مربع هستند بنابراین میزان اسلامپ باید در محدوده 4 اینچ باشد. اسلامپ بیشتر باعث رد شدن بتن در این آزمایش می‌شود.

 

سپس بعد از چند روز، تمام قالب‌های تخته سه لا باز می‌شود و می‌توانید محصول بتنی را مشاهده کنید. با توجه به اینکه من می‌دانم که بتن ریزی چقدر پر زحمت است، همیشه از دیدن آن شگفت زده می‌شوم با اینکه ممکن است ساده به نظر برسد.

وقوع کوچکترین اشتباه به این معنی است که مراحل بعدی نیز ممکن است با مشکل مواجه شود. تمام صفحات جاسازی شده، ارتفاع سقوط، لبه‌های آجری، لبه‌های آجری معکوس، پاکت‌های اتصال و غیره همگی باید به طور همزمان باز شوند. این کار نیز ممکن است ساده به نظر برسد.

 

سازه‌هایی با فونداسیون ساخته شده از بتن

شما می‌توانید از انواع مختلف تخته‌های نگهدارنده خاک استفاده کنید که از جنس پلاستیک فشرده ساخته شده‌اند.

در اینجا نیز می‌توانید از نزدیک نگاهی به جزئیات گوشه بیندازید، به برش مقطع تخته نگهدارنده خاک توجه کنید.

این بخشی از پایه بتنی است که تیرهای اصلی بر روی آن قرار می‌گیرند، اگر می‌خواهید مطالب بیشتری در این مورد در این نوع پروژه بدانید، به خواندن ادامه مطلب ادامه دهید.

در نهایت، این یک گاراژ جدا شده در سمت راست و خانه اصلی در سمت چپ با یک راهرو در میان است. دیوارهای نگهدارنده خاک در خانه قرار داده شده‌اند و شما می‌توانید پایه را در گوشه پایین سمت چپ خانه قرار دهید.

در ترانشه‌ها، می‌توانید فضای راهرو، لوله‌های زهکشی محیطی را نیز بتن ریزی کنید. اما این یک پست متفاوت برای یک روز دیگر است.

من سعی کردم مطالب را ساده حفظ کنم، اما اطلاعات کافی برای بیان بعضی از مزایا را در اختیار شما قرار دهم. در روز بتن ریزی، ما دسته‌ای از کارکنان را برای بازدید از چگونگی پیشرفت کارها را به سایت فرا خواندیم.

ما حتی صاحب خانه را به سایت دعوت کردیم و در حین بتن ریزی به او توضیح دادیم که چه اتفاقی در حال وقوع است. چنین چیزهایی می‌تواند واقعا خسته کننده باشد اما همانطور که در موارد مختلف ذکر کردم، شما باید چیزی را درک کنید تا قدر آن را بدانید.

این یک فونداسیون یا طرح ارزان نیست بنابراین ترجیح دادم زمانی را صرف توضیح آنچه در سایت در حال وقوع است کنم، زیرا در این صورت مالک بیشتر در مورد چیزی که در نهایت دریافت می‌کند شگفت زده خواهد شد.

من شکی ندارم که توصیف مشتری ما به مردم در مورد خانه‌اش بیشتر از یک کف پوش بلوط سفید یا یک فونداسیون تیر و پایه نخواهد بود.

اما با دانستن این موارد می‌تواند توضیحاتی در مورد برش کفپوش به مردم بگوید این یک کفپوش بلوط سفید است و این الگو تحت عنوان کلیسای جامع شناخته می‌شود و قادر است 13 بارگذاری بتنی را بر اساس روش بتن ریزی در تیرهای اصلی تحمل کند و من فکر می‌کنم این خیلی دلنشین است.



فونداسیون تیر و پایه قسمت دو

فونداسیون با یکپارچه سازی کف امکان فرو رفتن تیر در خاک زیر آن را از بین می‌برد. همانطور که در مقاله قبل گفته شد در زیر تیر اصلی، فضاهای خالی یا حفره‌های خالی وجود دارند.

 

چرا به این حفره نیاز خواهید داشت؟

 برای خرید تیرچه به سایت تیرچه خرمدژ مراجعه کنید

شما این را برای زمانی می‌خواهید که خاک اطراف آب را جذب کرده و گسترش می‌یابد، به این ترتیب خاک به فضای زیر تیر اصلی فشار وارد نمی‌کند.

داشتن این شکاف چیزی است که به شما اجازه می‌دهد نگران ترک‌های موجود در مصالح آجری و یا چارچوب درب نباشید. پایه‌ها و تیرها بر روی بستر سنگی قرار می‌گیرند، تیرهای اصلی بر روی پایه قرار گرفته و عدم وجود خاک در زیر تیرهای اصلی شما و یا ساخت فونداسیون به این معنی است که خانه شما حرکت نمی‌کند.

حتی زمانی که از تیرچه فولادی در سازه خود استفاده می‌کنید هم یکپارچه سازی کف می‌تواند در پایداری سازه بسیار مفید باشد.

من همه چیز را به شما گفتم و حالا شاید این توضیحات کمی برای شما قابل درک باشند. ما اخیرا تیرهای اصلی در یک پروژه مسکونی را بتن ریزی کرده‌ایم.

ریختن 13 کامیون بتن با فاصله 30 دقیقه‌ای باعث شد تا این فونداسیون تمام شود و اکنون حدود 80 درصد از کار کامل شده است. تمام چیزی که باقی مانده است، دیوارهای زیرزمینی، راهروهای تردد، پیاده رو و پله‌های بیرونی است.

برای رسیدن به همه نقاط سایت بدون آسیب رساندن به درختان، پیمانکار مجبور به استفاده از یک پمپ بتن با بازوی غول پیکر روی آن بودیم.

این دستگاه بتن را از عقب دستگاه دریافت می‌کند و آن را از طریق یک دسته از لوله‌های متصل به بازوی فشار می‌رساند.

تمام بتن در آخر وارد قیف می‌شود ... به همین سادگی.

این یک نکته مهم در تصمیم گیری در مورد چگونگی بتن ریزی بود. من در اغلب موارد نمی‌توانم از این پمپ‌های بتن در پروژه‌های مسکونی استفاده کنم، اما در پروژه‌های تجاری بسیار رایج هستند.

 

ریختن بتن فونداسیون

بازوی پمپ می‌تواند گسترش پیدا کرده و در تمام نقاط فونداسیون بتن ریزی کند. شما باید از قبل پیش‌بینی‌های لازم را در خصوص طول بازوی بتن ریزی داشته باشید.

ریختن بتن فونداسیون فوق العاده دشوار و منحصر به فرد است، من اغلب فکر می‌کنم که بتن ریزی در فصلی غیر از تابستان یکی از بدترین مراحل ساخت و ساز است، البته به جز فردی که بازوی پمپ را کنترل می‌کند، مراحل اجرای فونداسیون در عین حال یکی از شیرین‌ترین مراحل اجرای یک پروژه ساختمانی است.

در اینجا نگاهی به کنترل کننده بازوی پمپ می‌اندازیم. این واقعا مثل انجام دادن بازی‌های ویدئویی در تمام طول روز است، حداقل این چیزی است که اپراتور مربوطه به من گفت.

او در سایه ایستاده است و با دسته کنترل همه کارها را انجام می‌دهد، در حالی که افراد دیگر در حال حمل بتن مرطوب به نقاط مختلف هستند.

در برخی از پروژه‌های فونداسیون بتن با استفاده از تخته‌های سه لا مهار می‌شوند اما نگهدارنده‌های فلزی، طول عمر بیشتر و راحتی بیشتری را در زمان استفاده دارند.

در زمان بتن ریزی فونداسیون نباید در مقابل لوله تخلیه بتن قرار گرفت. اگر هوایی در لوله وجود داشته باشد باعث خواهد شد بتن به شما پاشیده شود.

تمام فونداسیون را می‌توان در یک مرحله بتن ریزی کرد. هنگامیکه که بتن در قالب ریخته شد، دستگاه ویبره وارد بتن شد تا مطمئن شود که کل سنگدانه‌ها به طور یکنواخت توزیع شده و هیچ حباب هوایی در آن وجود ندارد.

این کار بسیار ساده است اما به کمی مهارت نیز نیاز دارد. با میزان ویبره کم توزیع بتن شما نامتوازن خواهد بود و ویبره بیش از حد باعث می‌شود مخلوط بتن به سمت پایین برود و توزیع آن یکنواخت نباشد.j